Nb₃Al Development at NIMS II

--- Cu stabilization with double stacking ---

N. Banno (NIMS)

T. Takeuchi, A. Kikuchi (NIMS) K. Tagawa (Hitachi Cable) K. Tsuchiya, A. Yamamoto (KEK)

Background

for Cu stabilization

- Ion-plating & electro-plating
 - \rightarrow Long length fabricability
 - → but, might require cost

Another simple technique
→ Double-stacking method

How to make?

→ re-stack the quenched Nb(Al) solid solution wires into a Cu tube, and cold-draw it through normal dies

This method is based on the good ductility of the quenched Nb(AI) phase.

Diagram for fabrication

Developed wire

- -filament diameter: 8 μm
- •bend strain limit: 0.8%
- fabricated length: 20 m

1. $J_c - B$ characteristics

2. Magnetization

- 3. Bend strain tolerance
 - Crack observation

and a first design	tensile 🔶 Cu 🦻
bend strain 1.0%	← Ta
crack	← Nb ₃ Al
20 0	micron / 200 micron

• Bend strain limit

Tolerable bend strain : $\sim 0.85\%$ (conventional wire : $\sim 0.3\%$)

4. React & wind test

• applied bend strain

Summary

- 1. Cu is attached strongly by additional cold-drawing through normal dies.
- 2. The $J_c B$ characteristics of the wire is compatible to that of the conventional Nb₃Al wire.
- 3. The magnetization can be more reduced, if all the matrix is replaced by Ta.
- 4. The react & wind technique is applicable on this wire, up to about 0.8% bend strain, without J_c degradation.

Next objectives

- 1. Fabrication of all Ta matrix wire to suppress low-field instability under 1 T
- 2. Fabrication of long length wire more than 100 m

References

- N. Banno, T. Takeuchi, H. Kitaguchi, and K. Tagawa, "Strain tolerance in technical Nb₃Al superconductors", Supercond. Sci. Technol., vol. 19, no. 10, pp. 1057-1062, 2006
- N. Banno, T. Takeuchi, H. Kitaguchi, K. Tagawa, Y. Iijima, and A. Kikuchi, "Relationship between BCC-deformation, transformation temperature and microstructure in Nb₃Al wires",

IEEE Trans. Appl. Supercond., vol. 17, 2007, in press