Nb3Al線材の開発

- 1) 高電流密度化
- 2) 安定化銅付着法の改良

2010年 7月 6日

土屋清澄

高電流密度化(1)

• RHQ処理

Optimum な RHQ current が存在

基礎開発

高電流密度化(2)

・ RHQ処理後の加工

AR ratio (%)

減面率 40~50%が最適

高電流密度化(3)

· 変態熱処理(1)

高電流密度化(4)

· 変態熱処理(2)

変態熱処理条件を変えても Jc はほとんど変わらない。

高電流密度化(5)

・現状の線材の微視的観察(1) EPMA(Electron Probe MicroAnalysis)

M21-3 (80.6A) ME396-55 (76A) filament $J_c@10T$,4.2K: 2775 A/mm² filament J_c : 1420 A/mm²

Filament内の Al濃度 の分布が一様でない

高電流密度化(6)

・ 線材の微視的観察(2) EBSD (Electron Back Scatter Diffraction)

20µm=80step

Unique Grain Map

20µm=80step

Unique Grain Map

高電流密度化(7)

粒径比較

No	Misorie ntation	Bcc grain (μm)		A15 grain (µm)		J _{filament} (4.2
		Number	Area Fraction	Number	Area Fraction	K) (A/mm²)
M21-3 (80.6A) AR=0%	5°	4.65	12.03	0.693	3.9	2275@10T 687@17T
	2°	4.32	11.37	0.476	2.06	
M21-3 (80.6A) AR=42%	5°	0.754	4.6	0.865	1.722	3881@10T 1237@17T
	2°	0.512	1.85	0.618	1.158	
ME396-5 5(76A) AR=0%	5°	2.93	8.46	0.478	4.06	1420@10T
	2°	2.62	8.12	0.373	2.24	465@17T
M25-7 (119A) AR=0%	5°	2.215	6.401	0.976	2.748	(2001@14T)
	2°	0.866	5.221 基礎開	0.656	1.47	787@17T

高電流密度化(8)

• Nb3Al - bcc相からの変態によりA15相をつくる。

変態温度に達すればA15相ができる。

- 熱処理条件により粒径をコントロールするのは困難。

- S-N転移幅は Nb3Snに比べて広い。

Filament内のA15相が均一でない。

高 Jc 化を目指した試み

1) bcc相の粒径を小さくする。

粒界(粒径)のみがpinning centerとして働いてい

るのではない? Jc~1/Dではない。

2) Filament内の A15 相を均一化する。

2回 RHQ 処理?

安定化銅付着法の改良(1)

Ta-matrix線材への銅めっき

ME476-2a26-0.74 400 °C x 2h ME492-271-4 final 500°C x 1h ME476-226-0.74 500°C x 3 h

1) a/b = 1

ME476, ME492 (K2) の平ロール試験 (2009年1月)

2) a/b = 0.975~0.955

3) a/b = $0.878 \sim 0.872$

4) $a/b = 0.848 \sim 0.839$

安定化銅付着法の改良(2)

ME492 (K2) ケーブル断面 (2009年3月)

安定化銅付着法の改良(3)

ME502(K4) strandの平ロール試験 (2010年4月)

安定化銅付着法の改良(4)

ME502(K4)ケーブル断面 (2010年 6月)

安定化銅付着法の改良(5)

新めっき法 (2010年6月)

NIMS にて平ロール装置を通した線材の断面観察写真

1) めっきまま 2) a/b=~92%

3) a / b = ~87 %

4) a / b = ~79 %

安定化銅付着法の改良(6)

今後の計画

新めっき法の確立
めっき条件の最適化

"めっき試験を行う Ta-matrix 線材の不足"

• めっき線材の分析・解析