ビッグバンの前を探る
 小型観測衛星

LIEB RO

<u> 冷凍機ユーザーの立場から</u>

KEK宇宙マイクロ波背景放射観測グループ 羽澄昌史 masashi.hazumi@kek.jp

CMBに関する(長い)イントロ

宇宙マイクロ波背景放射 (Cosmic Microwave Background)

http://www.shokabo.co.jp/

タンポポ

蜂の目(紫外線に感度がある)でみると、花粉や蜜の場所がよくわかる

http://www.mytecno.jp/tecnoao/index.html

光速cは3億メートル/秒なので、100GHzのマイクロ波の波長は3ミリメートル

赤外線宇宙地図

地図の見せ方

モルワイデ図法

マイクロ波宇宙地図

T = 2.728 K

つまらない地図? しかし、これこそが、1978年のノーベル物理学賞

宇宙マイクロ波背景放射の発見 (1965)

Arno A. Penzias Robert W. Wilson

1978年 ノーベル物理学賞

衛星観測1:COBE衛星

2006年ノーベル物理学賞

John C. Mather George F. Smoot

1989-1993

COBEの衝撃的結果(2) 温度センサーの感度を あげていく T = 2.728 K30マイクロケルビン程度の でこぼこ(異方性)がある

これは量子論的ゆらぎ! それが、やがて銀河へと成長。 つまり人類の起源は量子ゆらぎ!

衛星観測2:WMAP衛星

2001年打ち上げ 現在も観測を続けている

圧倒的な解像度の向上が何をもたらしたか?

WMAPの衝撃的結果(1) 宇宙の年齢は137億年

温度(明るさ)の全天マップ

スペクトラムアナライザ (計算機を使用)

パワースペクトル

WMAPの衝撃的結果(2) 宇宙の謎のエネルギー成分をあぶりだした

素粒子標準理論で 説明できる部分

WMAP CMB Analyzer

- Red line = analyzed sky / universe signal.
- Blue line = your simulated sky / universe signal.
- Black points with error bars = 'binned' (grouped) data to analyze data accuracy.
- Light blue area = likelihood of results being caused by random chance- only a concern at large scale (left).

ANSWER

RESET

http://map.gsfc.nasa.gov/resources/camb_tool/cmb_plot.swf

Planck

打ち上げ成功! 温度揺らぎ計測の決定版 2012年に初期結果公開予定

CMBに関する長いイントロ 終わり

<u>インフレーションによる宇宙創成</u>

INFLATION

CMB

last scattering ビッグバンの前を記述する仮説 最も有望、しかし常識では信じがたい仮説 • 宇宙の一様性、平坦性、構造形成を見事に説明 ● 一瞬で"アメーバが銀河サイズになる" 宇宙の加速膨張 背後の物理法則は未知。素粒子標準理論で説明不可能

人類に課せられた最大の知的挑戦

<u>インフレーションと自然界の究極理論</u>

宇宙を見る新しい"眼"

低温=低ノイズ 新しい"眼"を得るには 革新的低温系が鍵

物理学の根本法則探求

<u>CMBによる原始重力波検出ー温度から偏光度へー</u>

CMB偏光Bモード CMB直線偏光マップ "渦"パターン 原始重力波の"刻印" CMB偏光Bモード検出がベストな原始重力波発見法 インフレーションエネルギーとBモード強度(r)が直接関係する!

インフレーションエネルギー = 1.06 × 10¹⁶ × (*r*/0.01)^{1/4} GeV

<u>CMBによるインフレーションの検証</u>

◆宇宙の一様性 🖊

◆宇宙の平坦性 ←

・宇宙構造の起源

初期CMB観測

BOOMERanG, WMAP, MAXIMA

COBE, WMAP, 銀河宇宙地図

2006年ノーベル物理学賞

• 原始重力波 ← 未発見

原始重力波は、インフレーションの存在を 直接証明できる、最も重要な予言

今後の大目標: 偏光Bモード

CMB偏光マップは精密に観測されておらず、謎に包まれている
CMB偏光測定は、原始重力波発見のベストな方法である
原始重力波の検出は、宇宙論、素粒子論双方に大きく寄与する
宇宙論:インフレーションの決定的な検証
素粒子:超高エネルギー(LHCの一兆倍)の物理

LiteBIRDとは

Lite (light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection

ロ サイエンス: インフレーションのエネルギースケール決定 「ビッグバンの前を探る」

2008年9月に
 小型科学衛星WGとして承認

□ 宇宙空間における100GHz を中心とした<u>CMB偏光</u>全天観測

 □ 特長:「究極の測定」を小型で実現 (高い角度分解能は必要ない)
 <u>100mKで動作する超伝導検出器</u>を使用

LiteBIRDワーキンググループメンバー

- 福家英之、松原英雄、満田和久、吉田哲也(ISAS/JAXA)、
- 篠崎慶亮、佐藤洋一、杉田寛之(ARD/JAXA)、
- 石野宏和、樹林敦子、三澤 尚典、美馬覚(岡山大理)、
- 松村知岳(Caltech)、 ← Planck, BICEP, EBEX
- Julian Borrill (LBNL), Planck
- 大田泉(近畿大)、
- 吉田光宏(加速器/KEK)、
- 片山伸彦、佐藤伸明、住澤一高、田島治、西野玄記、羽澄昌史、長谷川雅也、樋口岳雄(IPNS/KEK)、 CUIET, POLARBEAR
- 柳沼えり(総研大)、
- 高田卓(筑波大)、
- 木村誠宏、鈴木敏一、都丸隆行(低温セ/KEK)、← POLARBEAR
- 小松英一郎(UT Austin)、 ← WMAP
- 鵜澤佳徳、関本裕太郎、野口卓(ATC/NAOJ)、 ← ALMA
- 茅根裕司、服部誠(東北大理)、
- 大谷知行(理研)

41名 2009年12月31日現在

コンサルタント: 小玉英雄(KEK)、中川貴雄(JAXA)、川邊良平(NAOJ)

← SPICA、DIOS、大気球

プロジェクトマネジメントに関する進展

- 1. 日本物理学会・宇宙線宇宙物理領域 「宇宙背景輻射」セッション誕生(2009年3月)
- 2. 平成21-25年度科研費新学術領域研究(研究領域提案型) 「背景放射で拓く宇宙創成の物理―インフレーションからダー クエイジまで―」採択(2009年7月)→基礎的試作の経費
 ◆ 公募研究(H22-23, H24-25)
- 3. 前哨戦としての地上CMB実験(QUIET、POLARBEAR)
 要素技術の実証
 系統誤差の徹底理解
- 4. 他プロジェクトとの技術的連携 → 相乗効果・波及効果
 - DIOS: 冷凍機システムなど
 - ASTE: TESボロメータ読み出しシステムなど

次スライド以降で、2と3について補足

LiteBIRDの前哨戦:地上観測 QUIET POLARBEAR

Huan Tran Telescope

チリ・アタカマ高地

40GHz、90GHz

(標高5080m)

POLARBEAR2号機クライオスタット

◆0.3Kまでは一号機を踏襲: PTC + SC ◆PTC: Cryomech PT415を2台 (1号機は1台) SC: Chase He10 sorption cooler ◆0.3K → 0.1Kのために一段ADR ◆超伝導スイッチ、CPA(ソルトピル) ◆センサーはMC-TES(90GHz+150GHz) ◆焦点面を倍にする(感度向上):熱設計へのインパクト 2号機:日本グループが設計・製作 32

プロジェクト関係図

LiteBIRDの感度

発見を超えて、スペクトル測定によるモデルの絞り込みへ

LiteBIRD: 戦略とDesign Concept

- 現在多くの地上/気球実験が進行中・準備中
- アメリカ/ヨーロッパでのCMB偏光衛星実験検討 ⇒大型衛星実験(2020年代)
- インフレーションの直接検証にテーマを絞れば、小型で究極の測定が可能

→ 軽量化を追求し、早期(2020年より前)の打ち上げの道を探る

LiteBIRD Design Concept

- 小型衛星に搭載するために軽量化及びコンパクト化 質量 < 400kg, 全長 < 1m
- 検出器の数を増やし統計誤差を下げるための広い焦点面
 検出器数 >1000, 直径 = 30cm, 視野 30° × 30°
- 前景放射を分離するための広い帯域をカバーした光学系及び焦点面 帯域 60~250GHz
- 偏光の系統誤差を減らすためのシンプルな光学系 1/2波長変調板はサファイアを用いる。直径 < 30cm

多色焦点面:超伝導検出器

Berkeley type TESボロメータアレイ

0000000

• オプションとしてSTJ、MKID

Spectrum 90-150-220 Ghz Triplexer

KEKの新しいクリーンルーム

Strawma

³He sorption fridge

ADR

	衛星運用期間			2年以上 (ミッション部の耐用年数5年)		
	Sun-Earth L2 点、あるいは近地球の太陽	也球の太陽同期軌道				
	姿勢制御精度	5arcmin (ビームの 1/10) 以下。				
$\overline{\tau}$						
	重量 ミッション部 200Kg以下、総重量 400Kg以下。 消費電力 ミッション部 200W以下、総消費電力 500W以下。					
and the second sec	冷却系	赤外線天文衛星 SPICA の冷却方式と同様 冷却と機械式冷凍機で冷却。打ち上げ後	兼、冷媒を使用 スペースで冷却	しないで、放射 印。		
	焦点面検出器	超伝導検出器アレイ(TES ボロメータ又は STJ)。				
	検出器感度	Total NET $< 1 \ \mu K \sqrt{s}$				
A Anti Cum direction/Onin auto	少なくとも 90GHz、150GHz の二周波数	Hz の二周波数で十分な画素数、角度分解能				
	(1度以下)、視野を確保。スペースの制限内で 45GHz、300GHz を出来 ろ限り加える。					
$ \rightarrow $	変調・復調	衛星全体を回転。更にビームによる系統	誤差を除くため	りの変調を加える。		
Lenses		ミッション部	重量 (kg)	電力 (W)		
		焦点部 (検出器・光学系)	60			
		ミッション部電気系(検出器)	20	100		
		バッフル・構造	40			
Focal plane		クライオハーネス	5			
サブケルビン (ADR) 冷凍機				20		
		2K 級 (JT+スターリング) 冷凍機	30	160		
		ミッション部合計	175	280		
		バス部	重量 (kg)	電力 (W)		
		構造体・熱制御・計装	50	30		
sorption fridge Half-wave n	lato	太陽電池パドル・電源系	30	20		
	hate	データ処理・通信系	20	60		
		姿勢制御系・推進系	50	100		
		バス部合計	150	210		
	ĺ	総計	325	490		
		Strand State of Cal	8.1			
SQUIDs	adiation sh	ields	0			
	/					
	▶					
	s	軽量化の力さ	ごけっと			
			1027			
		1)SPICAタイ	ィプのヨ	予冷系		
▲			==			
JT/ST	ad 2) 多巴焦点	IEI				
and compressor						
	mpiessoi					
BUS unit						
(including readout electronics, attitude control system, telemetry)				38		

38

冷却系に課せられる条件

使用環境:宇宙空間(地球周回太陽同期軌道、またはL2)
JAXA小型科学衛星の仕様を満たすこと
無重力状態であることに留意
耐用年数:2年以上(5年間の観測を目指す)
冷凍能力:100mKで1µW以上
磁場シールド:検出器系(クライオパーム含む)への外部磁場が 地磁気以下

・上記二点はTESを想定した場合

• 低ノイズ:

• 電磁場シールド、防振

冷凍能力~1W、熱侵入 1.1W。G10サポートの 構造設計改良により軽減。

冷凍能力150mW、熱侵入 100mW_{\odot}

冷凍能力30mW w/ 4He (3He)、 熱侵入10.6mW。

熱侵入0.57µW Cf. Planck: open-cycle dilution Astro-H: CADR DIOS: 2ADR POLARBEAR II: SC+1ADR

LiteBIRD:まとめ

- Lite (light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection
- サイエンス: インフレーションのエネルギースケール決定

デザインコンセプト:

- 60-250GHzのミリ波の偏光を全天で精密観測(2μK・arcmin以下)
- 多色焦点面とWarm launch (SPICA方式)で軽量化
 - ゆがみの少ない光学系+回転半波長板で系統誤差を極力おさえる

プロジェクトマネジメント関連:

- 2008年9月: JAXA小型科学衛星WGとして承認
- 2009年7月:科研費新学術領域採択(平成21-25年度)
- 前哨戦としての地上プロジェクト(特にPOLARBEAR II)
- DIOS、ASTEとの技術連携 → 相乗効果・波及効果

調査研究会に期待すること

LiteBIRD and/or POLARBEAR IIへの参加! 現在の陣容(敬称略)

高田卓(筑波大)
 木村誠宏、鈴木敏一、都丸隆行(KEK)
 篠崎慶亮、佐藤洋一、杉田寛之(JAXA): LiteBIRD WG

- Closed-cycle Dilutionの調査とADRとの総合的 比較

- ・技術的課題の明確化
- R&Dに必要な期間の予測

補足スライド

<u>KEKで宇宙観測をする動機</u>

「宇宙の背後にある根本法則を発見」

遥かなる 宇宙のルールブック

葉書き一枚で書ける と期待している (作業仮説)

Zemaxを使った光学デザイン。

- ・ 光軸対称の屈折望遠鏡
- 視野: 30°×30°
- Strehl ratio > 0.8 (回折限界)を平面 焦点面全域 @ 300GHzで実現。
 レンズ: 高密度ポリエチレン (高密度ポリエチレンの放射耐性、酸 化への影響によってはSiレンズを 用いる。)

光学系の温度は2Kに保つ

- 1/2波長板を用いた偏光変調 - 偏光角度を回転
- ・ メインビームの系統誤差
- ・ サイドローブをコントロールする

IR blocker Aperture 直径 = 30 cm 1/2波長板

HDPE 対物レンズ

HDPE 接眼レンズ

アンテナ結合型検出器

A02:初期宇宙探査のための超高感度アレイデバイスの研究開発 代表:大谷知行(理研)

究極のCMB観測の基盤技術

計画研究A02:研究内容

A01(KEK)

A03(JAXA)

STJ Overview

- Superconducting Tunneling Junction Detector (超伝導接合検出器)
- meVの光子に対するphotoconductor
- 他の超伝導検出器よりノイズが小さく、高速、ダイ ナミックレンジが大きい: 最高の次世代検出器

0.3K無冷媒冷凍機@KEK

ミリ波シグナルを観測!

•測定温度:0.3K

ギャップ: 2Δ=1.1mV

結果

90GHzのミリ波照射に より、フォトン検出によ るギャップの変化を確 認した。右図でギャッ プ0.3mV(90GHz)の 電圧変化が見える

bl-Stop			1		
			/		A Trigger Source
					Ch1
	· · · · · · · · · · · · · · · · · · ·				Ch2
			bm Ibm		
			bm bm bm		Ch4
Ch1 1.0 mV∿ Ch2	20.0mV∿	M2.00ms	A Ch1 J	120µV	-more- 1 of 3
Type Edge	Source Ch1	Coupling DC	Slope J	Level 120µV	Mode Normal & Holdoff