第1回 超流動ヘリウム冷却システム技術調査研究会(10.01.29)

## 連続型ADR(断熱消磁冷凍機)の構築と 試験結果

物質·材料研究機構 沼澤健則、(神谷宏治、高橋健太)

NASA/Goddard宇宙飛行センター Peter Shirron

> JAXA宇宙科学研究本部 満田和久

### 写真:パラボリックフライト中のMU-300(DAS提供)

## 講演の概要

1. プロジェクトについて
 2. 微小重力実験用ADRシステムの開発
 3. 実験の概要
 4. 総括・展望

# 超低温・極低温環境が必要な宇宙実験

| 日本における研究       |              |                               |                          |  |  |  |  |
|----------------|--------------|-------------------------------|--------------------------|--|--|--|--|
| 研究分野           | 研究テーマ        | ミッション名                        | 必要な冷却条件                  |  |  |  |  |
| 宇宙科学           | X 線          | Astro-E2(マイクロカロリメータアレイ)       | 0.4µW at 60mK(熱スイッチ      |  |  |  |  |
|                |              | NeXT                          | ロスを含まず)                  |  |  |  |  |
|                |              | DIOS                          | 2 $\mu$ W at 50mK        |  |  |  |  |
|                |              | XEUS(ESA 主体の国際協力ミッション)        | 2 $\mu$ W at 50mK        |  |  |  |  |
|                |              | (TES型X線マイクロカロリメータアレイ)         |                          |  |  |  |  |
|                | 遠赤外及びサブミリ    | SPICA (TES 型赤外線ボロメータアレイ)      | 2 $\mu$ W at 50mK        |  |  |  |  |
|                | 紫外線          |                               | < $10 \mu$ W at 50-100mK |  |  |  |  |
| 微小重力基礎<br>物理   | 固体ヘリウム       | <u>奥田プロジェクト</u>               | $100 \mu W$ at 0.1K      |  |  |  |  |
|                | He3/He4 相分離  | 水崎プロジェクト                      | < 1mW at 0.1-0.87K       |  |  |  |  |
|                | 超流動ヘリウム物性    | 村上プロジェクト                      | 2K                       |  |  |  |  |
|                | 一般相対論        | 重力波プロジェクト                     | 700mW at 7-9K            |  |  |  |  |
| 実験支援装置         | 無重力下強磁場      | 小型無冷媒超伝導マグネットの冷却              | 100mW at 数 K             |  |  |  |  |
| 米国における研究       |              |                               |                          |  |  |  |  |
| 宇宙科学           | X 線          | MBE(X 線マイクロカロリメータ)            | $4\mu$ W at 50mK         |  |  |  |  |
|                |              | Constellation-X(TES 型 X 線マイクロ |                          |  |  |  |  |
|                |              | カロリメータアレイ)、MAXIM              |                          |  |  |  |  |
|                | 遠赤外及びサブミリ    | SPIRIT, SPECS,                | < 10µW at 50 - 100mK     |  |  |  |  |
|                |              | FAIR                          |                          |  |  |  |  |
|                | 紫外線          | SUVO, EUV Solar               | <10 $\mu$ W at 50-100mK  |  |  |  |  |
| HEDS           | 液体ヘリウムの超流動転移 | DYNAMX, MISTE, SUE, BEST      | 2-3mW at 2K              |  |  |  |  |
| (微小重力基<br>礎物理) | 固体ヘリウムと超流動液滴 | KISHT, SHE                    | 0.5mW at 0.4-0.6K        |  |  |  |  |
|                | He3/He4 の3重点 | EXACT                         | 1mW@0.5-0.8K,            |  |  |  |  |
|                |              |                               | 2-3mW@2K                 |  |  |  |  |
|                | 一般相対論        | SUMO                          | 2-3mW at 1-4K            |  |  |  |  |

## 宇宙実験に対するADRの必要性

4

- ・ 超低温の高効率な発生手段
- · 重力に依存しない冷却方法 長期信頼性と小型化を達成可能
- ・ 冷媒が不要、電力供給のみで作動可能



制約の少ない、連続作動ADRが必要

- ・従来のADRは間欠的な冷却器
- 冷凍時間と冷凍能力が制約
- 用途が限定

## 連続型ADRの実証(NASA/Goddard)

# ・2つのカルノーサイクルを位相をずらして結合 ・バッファユニットM1が一定温度を保持 ・0.1K以下を±9µKで連続して維持可能 (NIMSは材料開発で2000年から参加)



## 宇宙環境利用公募地上研究(2005-2007)

- · 連続型ADRの微小重力環境での作動実証
- 冷凍負荷を用いた連続作動の実証
- · 宇宙用・航空機実験用冷却システムへの課題を抽出
- ・ 大きな冷凍能力:100 $\mu$ W、100mK  $\rightarrow$  冷凍サイクル高速化、磁性体性能増強
- ・ 小型・軽量化 → 熱設計の見直し、アルミ材料の多用
- · 汎用試料空間 → 直径15cm×高さ20cm、窓付クライオスタットも使用可
- ・ 自動化・省電力化 → 計測・制御ユニットを一体化、高度な制御プログラム
- · 液体ヘリウムを使用しない無冷媒冷凍システム → 4K-GM冷凍機の採用



開発のスキーム



# Continuous ADR

| ・4段のユニット(磁性体+マグネット)を直列に接続   | Stage | Refrigerant | Mass | Field |
|-----------------------------|-------|-------------|------|-------|
| ・各ステージ間には熱スイッチがあり、そのON-OFF  | 1     | CPA         | 90g  | 0.2T  |
| によりステージ間の熱流を制御              | 2     | CPA         | 90g  | 0.8T  |
| ・ADRからの排熱は0.1W型4K-GM冷凍機によって | 3 4   | CPA         | 90g  | 1.6T  |
| 吸熱される                       |       | GLF         | 66g  | 4T    |

\* CPA=クロムカリウムミョウバン GLF=GdLiF<sub>4</sub>



# Continuous ADR サイクル



熱スイッチ



# **CADRの構成部品**

- 主要部品はNASA(Goddard)に出張し、作製、テストを行った マグネット、熱スイッチ、CPA磁性体(マグネットは1台破損)
- ・ クライオスタットを含めた熱設計とADRの組み込み製作は日本側
- · ADRコントローラのカスタマイズ(LakeShore社)→電源+温調
- ・ パソコンによるデータ収集、サイクルの手動操作



磁性体ユニット

超伝導マグネット

超伝導熱スイッチ

自己吸着型ガス伝導熱スイッチ

# 実験装置の熱リンク



\* 4th stageとBase plate間の熱スイッチは4th stageとの一体型

# 連続型ADR冷凍システム主要部

#### 磁性体(CPA、GLF)、熱スイッチ(Gas-Gap、超伝導)、マグネット、磁気シールド



磁性体: CPA=CrK (SO<sub>4</sub>)<sub>2</sub>·12H<sub>2</sub>O, GLF=GdLiF<sub>4</sub>

# 連続型ADRクライオスタット部

#### Nb<sub>3</sub>AI超伝導線使用による低熱侵入化、アルミ材料の多用による軽量化



# 地上での冷却試験

- 安定した連続型ADRサイクルの駆動に成功
- 冷却ステージを105~120mKで PIDコントロール(rms 235~596µK)
- TES型X線カロリメータの作動を確認





## 航空機実験の概要

県営名古屋飛行場(旧小牧空港 ダイアモンド・エア・サービス)にて実施

- ADRシステム作動条件のチェック
  - ・予冷用4K-GM冷凍機(特に圧縮機)
  - ・クライオスタット、ADR本体(振動)
- ・ 発生温度はどのくらいか
- TES型X線センサー:ISAS·首都大学·金沢大学グループ
- 固体ヘリウムの冷却:東エ大・奥田研究室



## 航空機実験準備における問題点

- ・予冷時間の事前調整:室温から4Kまで36時間(月曜日の実験)
   ・電源供給の中断
  - ・実験当日に航空機へ搭載しなくてはならない(15分)
  - ·格納庫から駐機場への移動(10分):4K→10K
  - ·機内温度の上昇(圧縮機性能の低下)
  - ·対処策

駐機場での準備時間を増やすことで(2.5時間以上) 連続作動条件をクリア





# 航空機実験用ADR

・3ラック構成(MU-300占有)
・クライオスタット65kg、TES計測88kg
・圧縮機・ADRコントローラ90kg
・電力:14A+4A(100V, 60Hz)
・EMI試験を含め、条件を全てクリア





# 航空機実験の概要

#### MU-300





#### 1パラボリックフライトにおける飛行軌跡



19

機内の振動ノイズ

・航空機内における振動ノイズ

・低周波(数10Hz): Taxing、離陸時、乱気流(振幅大)
 →熱スイッチのショート(連続サイクルのやり直し)
 ・高周波(kHzオーダー):ジェットエンジン→ADR冷却部の発熱



## 除振装置の変遷

Temperature (K)

#### DAY 3(自作除振装置)



## DAY 4(市販空気ダンパーと耐震君)



#### DAY 4における結果 (S2で150mKを得る) CADR trying to start the cycle during the flight on 2007-12-20



★航空機振動の定量的解析に基づいた除振システムの必要性 ★GMの周波数による地域差問題の考察が必要

# 航空機実験結果

- · 機械式4K-GM冷凍機の作動 → ほぼ問題なし(3.3K~3.7K)
- ·微小重力発生時におけるADRの運転特性 → 安定化
- ・クライオスタット、ADRの2Gに対する運転強度 → 問題なし
- ·Taxing時、離陸時、巡航時の乱気流による揺れ → 熱スイッチのショート
- ·新開発の除振装置は効果あり → 巡航時の熱ショートはほぼ抑制



# 固体ヘリウムの生成

**固体ヘリウムの冷却(東エ大・奥田研究室)** •冷凍能力仕様:0.1K, 0.1mW •セル容積:3.5cc程度(当初)、17cc(実際)

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

- 固体ヘリウム生成温度1K以下まで到達できなかった
- ・熱容量・熱侵入が設計値の5倍以上
- •設計値:1日程度で0.3K以下に到達 → 実際のセルでは1週間以上かかる計算
- ・中間ステージ(1K)冷却が4段ADRでは不可能 → 1Kポットを設置すれば現状でも可能

# ヘリウム予冷用1K-potとの併用

#### ヘリウム予冷のために1K-potを設置

・1K-potにおいてヘリウム4を減圧して予冷する
・サンプル用ヘリウムを1~2Kまで予冷したのちヘリウムセルへと直接導く
・1Kから300mK以下へはCADRによって冷却する

![](_page_24_Figure_3.jpeg)

# 総括と展望

汎用連続型ADR

.

•

.

- ・ 連続カルノーサイクル駆動を達成した
- ・ 連続型として初めてTES型X線カロリメータの駆動を実証した
- 航空機実験(微小重力環境)
  - ADRの特性は安定化し、微小重力での作動は問題なし
  - ・ より一層の振動対策が必要
  - 固体ヘリウムの生成実験
  - ・ 現状のADR装置の改良には時間的猶予がなかった
  - ・ 1Kポットを設置すれば、最小限の改良で運転は可能(現在、進行中)
  - 本来は、1K冷却用にADRユニットを増設することが望ましい (Active熱スイッチ使用)
- より汎用なADRを目指して
  - ・ 中間ステージにサーマルアンカーが必要→5段方式
  - ・ より簡便なコントローラ開発

# Acknowledgement

本研究は宇宙環境利用公募地上研究によって実施されました。 JSF、JAXA、ダイアモンド・エア・サービス 東工大・物理 奥田研究室、首都大学東京・物理 石崎研究室、 金沢大学・物理 藤本、松本(宏)研究室、NASA/Goddard D. Wegel, M. Dippiro 東北大学 佐藤名誉教授、JAXA宇宙用冷凍機WG

![](_page_26_Picture_2.jpeg)