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By making the rotating wave approximation"’, we find equations
with analytic solutions for the resonant case. The conductivity
induced by a rectangular pulse of duration 7 is taken to be
proportional to (1-py;(7}}, the total number of donors excited
aut of the ground state at the end of the terahertz pulse. The solid
curves in Fig. 3a are a least-squares fit of the data to this analytic
solution. The fitted curves reproduce the essential features of the
data.

The inset to Fig. 3a shows the Rabi frequency and damping rates
extracted from the fits as functions of Ery. If we assume a dipole
‘matrix element of 10 nm, then the Rabi frequency at a terahertz field
of3.1 X 10'Vm ' is predicted tobe 4.7 ¥ 10" rad s *, well within
experimental error of the observed value. The fitted Rabi frequency
increases roughly linearly with Erye,, but with a non-zero intercept.
‘The magnetic field was tuned to be resonant at the highest Exy,. The
non-zero intercept s consistent with the detuning that results from
the shift in the resonance frequency with Ery,, (see Fig. 3b).

We calculated the curves in Fig. 4b by fixing the model parameters
with a fit t the on-resonance curve, and varying only the detuning
for the off-resonance curves. The frequency of the oscillations in the
theoretical curves increases with increasing detuning, while the
amplitude decreases, as observed in the experiment; however, we
note that the amplitude decreases much more quickly with detuning
in the experiment.

The mechanisms that damp the observed Rabi oscillations are
extrinsic to the model qubits, and much faster than predicted
intrinsic decoherence. The value of the dephasing rate v, at the
lowest terahertz field is, within experimental error, the same as that
abtained from the linear spectra, 60 X 10°s '. This regime is

broadened by a background disorder potential®®
Asthe terahertz field is increased, the inset to Fig. 3a shows v, and ys
increasing, consistent with a photoionization process that couples
the 2p” state to a higher excited state. Intrinsic decoherence of
‘motional states of hydrogenic impurities is expected to be limited
by very weak coupling to acoustic phonons**~*%. From table IIT of
ref. 23, the contribution of acoustic-phonon coupling to the line-
width (full-width at half-maximum, FWHM) of the 1
r at zero magnetic field is predicted to be
Kpa*?) = 0.2 peV (where = = 8.6¢V is the deformation
potential, @ = 10 nm is the Bohr radius, p = 5,300kgm * is the
density, and v = 3,700ms " is the velocity of sound, correspond-
ing to an intrinsic decoherence rate y, <2 ¥ 10%s '. Such deco-
herence rates, more than 1,000 times slower than typical Rabi
frequencies measured here, would enable more complex manipula-
tions of the model qubits. Future experiments will attempt to
measure the intrinsic decoherence time of 2p {m = — 1) hydro-
genic donor states, which are well below the continuum and hence
Tobust to ionization by photons and phonons.
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In the light of the tremendous progress that has been made in
raising the transition temperature of the copper oxide super-
conductors (for a review, see ref. 1), it is natural to wonder how
high the transition temperature, T, can be pushed in other classes
of matecials. A preseat,the highest reported \—..lum of . for non-
ide bulk ivity are 33K in el
Cs‘Rb Cm (ref. 2), and 30K in Ba,, J( BiO; (ref. 3! (Hole- do])ed
Cep was recently found" to be superconducting with a T as high as
52K, although the nature of the experiment meant that the
supercurrents were confined to the surface of the Cgp crystal,
rather than probing the bulk.) Here we report the discovery of
bulk in diboride, MgB,. Magneti-
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zation and resistivity measurements establish a transition tem-

peratute of 39K, which we believe to be the highest yet
fora pper-oxide bulk

The samples were prepared from powdered
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Figure 1 X-ray difraction pattern of MgB at room temperature.

Figure 2 Crystal sucture o Mgk

under a high argon pressure, 196 MPa, using a hot isostatic pressing
(HIP) furnace (O.DrHIP, Kobelco) for 10ho; er X-ray
diffraction was performed by a conventional X-ray spectrometer
with a graphite monochromator (RINT-2000, Rigaku). Intensity
data were collected with CuKa radiation over a 28 range from 5° to
80° at a step width of 0.02°.

Figare 1 shows a typical X-ray diffraction pattern of Mg, taken
t room temperatare. Al the intense peaks can be indexed assuming
an hexagonal unit cell, with @ = 3.086 A and ¢ = 3.524 A . Figure 2
shows the crystal structure of MgB, (ref. 5), of which the space
group is PS/mmm (n0.191). As shown in Fig. 2, the boron atoms are
arranged in layers, with layers of Mg interleaved between them. The
structare of each boron layer is the same as that of a layer in the
graphite structure: each boron atom is here equidistant from three
other boron atoms. Therefore, Mg, is composed of two layers of
boron and magnesium along the ¢ axis in the hexagonal lattice.

Magnetization were also performed with a SQUID

99.9%) and powdered amorphous boron (B 9
The powders were mixed in an appropriate ratio (MgB =
ground and pressed into pellets. The pellets were heated at 973

£81©2001 Macmillan Magazines Ltd 63

magnetometer (MPMSR?, Quantum Design). Figure 3 shows the
magnetic susceptibility (x = M/H, where M is magnetization and
H is magnetic field) of MgB; as a function of temperature, under

64 PR© 2001 Macmillan Magazines Ltd
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Temperature (K
Figure 3 Magnetic susceptbiity x of MgB,as a function of temperature. Data ere shown

for measurements under conditions of zero field cooling (ZFC) and field cooling (FC) at
1008,

Fesisiviy (10 cm)

Ol

I

Figure 4 Temperaturs dependence of the rasistiviy of MyB; under zero magnetic fisld.

conditions of zero field cooling (ZFC) and field cooling (FC) at
10 Oe. The existence of the superconducting phase was then con-
firmed unambiguously by measuring the Meissner effect on cooling
in a magnetic field. The onset of a well-defined Meissner effect was
observed at 39 K. A sperconducting volume fraction of 49% under
a magnetic field of 10 Oe was obtained at 5 K, indicating that the
superconductivity is bulk in natare. The standard four-probe
technique was used for resistivity measurements.
Figure 4 shows the temperature dependence of the resistivi
MgB, under zero magnefic field. Theonset and end.point rans
are 30K and 38 K, respectively, indicating that the
ity was traly realized in this system. [u}
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Mineral [{EEE(G ton] [{E#E[S/ kgl (1996)

Al 28.000 1.54

B 0.420 0.375

Mg 3.600 2.7+39

Nb 0.004 6.61

Sn 0.010 610

Ti 0610 9.9
(Mineral Commodity Summaries (2005), (1997))
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Mg + 2 B -> MgB, o =0.74
. _ Viuga2
7530 :13.97+2x4.914=23.80 cm3mol
£38:17.53 cm3/mol

B (g/cm”3] 1.74 2.2 2.62
5 F &g/ mol] 2431 10.81 4593

S F A em™3/mol) 13.97 4914 17.53
(BHER )
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BOHIZ3E B 3 1IXAV=+7.70 cm3/1mol MgB,
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B& 1k 1= JT s

2Mg(solid) + O2(gas) == 2MgO(solid)

4B(solid) + 302(gas) == 2B203(solid)

AG® = RT Log[pg,]
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