Superconducting Combined Function Magnet System for the J-PARC Neutrino Beam Line

~ Status of Magnets ~

Ken-ichi SASAKI
KEK

1. Introduction
2. System Overview & Design
3. Development of Quench Protection Scheme
4. Tests for Production Magnets
5. Summary and Schedule
Collaborators

KEK

NIFS
T. Obana

Mitsubishi Electric.
T. Ichihara, T. Minato, Y. Okada

BNL (Corrector magnet)
M. Anerella, G. Ganetis, R. Gupta, M. Harrison, A. Jain, J. Muratore, B. Parker, P. Wanderer

CEA/SACLAY (Quench Detection & Acquisition System)
J. P. Charrier, A. Bouty
Contents

1. Introduction
2. System Overview & Design
3. Development of Quench Protection Scheme
4. Tests for Production Magnets
5. Summary and Schedule
Neutrino physics at J-PARC
Tokai-to-Kamioka (T2K) LBL ν experiment

Objective: study the nature of neutrino in detail

T2K (2009~)

- Off-axis sub-GeV ν_μ beam from J-PARC 50GeV-PS
- $\sim 3000 \nu_\mu$ CC int./yr (w/o osc.)
- ν_e appearance discovery
- ν_μ disapp. precise meas.
- 5 year const. Start exp. in 2009
JPARC project and
neutralino beam line

JAERI@Tokai-mura
(60km N.E. of KEK)

<table>
<thead>
<tr>
<th></th>
<th>JPARC</th>
<th>NuMI (FNAL)</th>
<th>K2K</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(GeV)</td>
<td>50</td>
<td>120</td>
<td>12</td>
</tr>
<tr>
<td>Int.(10^{12}ppp)</td>
<td>330</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>Rate(Hz)</td>
<td>0.275</td>
<td>0.53</td>
<td>0.45</td>
</tr>
<tr>
<td>Power(MW)</td>
<td>0.75</td>
<td>0.41</td>
<td>0.0052</td>
</tr>
</tbody>
</table>

10^{21}POT(130day) \equiv “1 year”
System Overview

- about 90° bending
- R~105 m
 - Dipole : 2.6 T
 - Quad : 18.6 T/m

Super conducting combined function magnet system
Combined Function – Merit & Demerit?

Merit
Reduce ...
- No. of components
 - 40 → 28
- Cost
 - $>\sim 10\%$ cost reduction (separate function)
- Time & Manpower for Development
 - single magnet design

Increase ...
- Beam acceptance
 - $59\pi \rightarrow 69\pi$ (:Increase Q magnet)
- Space between magnets
 - Beam monitor can be installed

Demerit
- No example in the world
- Tunnability is restricted

Note: need corrector magnets
Dipole and Quadrupole Field Superimposed in a single coil

- Conventional Magnet
 - Inclined iron pole gap
 - KEK-PS Booster
 - BNL AGS

- Superconducting Magnet
 - Dipole and Quadrupole coils assembled in multi-layer coils
 - KEK-B insertion corrector
 - DESY HERA insertion
 - D & Q current distribution superimposed in single layer coil
 - New Proposal for J-PARC neutrino beam line magnet,

Present Work
Contents

1. Introduction
2. System Overview & Design
3. Development of Quench Protection Scheme
4. Tests for Production Magnets
5. Summary and Schedule
Specification

2+5 Blocks, 41 turns

Pole 20°

Coil ID.: 173.4mm
Mag. Length: 3300 mm
Mech. Length: 3630 mm @RT
Tmax: < 5.0K (Supercritical Helium)
Dipole Field: 2.59 T
Quad. Field: 18.6 T/m
Field Error: < 10^{-3}

Op. Current: 7345 A
Op. Margin: 72%
Inductance: 14.3 mH
Stored Energy: 386 kJ
of Magnet: 28
SC Cable: NbTi/Cu for LHC arc Dipole Outer-L

50 GeV
Coil Winding for Prototype Magnet

Mirror-symmetry Top & Bottom coils of the prototype
Yoking

Top Collar Installation

Key pushing

Top Yoke Installation

Yoking complete
Shell Welding, Ends Works

Longitudinal shell welding by two automatic welding machines.

End-ring welding

Leads connection by soldering.

Complete
Magnet System with Cryostat

- Combined Function Magnet
 - Dipole 2.6 T
 - Quad 18.6 T/m
 - Produced by single layer coil
- 2 magnets assemble with 1 cryostat
 - F & D magnets (doublet optics)

Reduce cost
- LHC common parts
- Vacuum vessel
- Cold diode
- Support post
- Shield tray

Diagram showing key components:
- SC Busbar
- Iron Yoke
- Stainless Steel Shell (SHV Vessel)
- Lock Key
- Yoke Stack Tube
- L/R Asymmetric Coil
- Plastic Collar
Powering Scheme

- 28 combined function superconducting magnets (dipole and quadrupole in one magnet)
- 14 cryostats (2 magnets per cryostat)
- Magnets in serial
- Focusing and Defocusing magnet
- Cold diode magnet protection
- Necessity of a MSS (Magnet Safety System)
- 6 correction magnets (not on this scheme)
Cryogenic

- Refrigerator Power; 1.2kW@4.5K, 2.5kW@80K
- Supercritical Helium Pump, 300~400 g/s 400kPa
Contents

1. Introduction
2. System Overview & Design
3. Development of Quench Protection Scheme
4. Tests for Production Magnets
5. Summary and Schedule
Protection Circuit

- Series Excitation of all magnets (~ 0.4 H)
- In the previous protection scheme, magnet is mainly protected by the cold diode.

Dump Circuit
Protect Cold Diodes and SC Bus Bars
Time Constant: 10 sec

Cold Diode
Turn On Voltage: 6V
Forward Voltage: 1V

Powering Scheme
Protection System

- **mainly protected by Cold diode**
 1. Once quench starts
 2. Exceed turn-on voltage
 3. Current bypasses to cold diode

Test results:

- **voltage rise was much slower than we expected**
- **Peak Temp. > 500 K from numerical simulation**
Discussion of Quench Protection Scheme

- Al sheet (t=0.1mm, RRR=2000)
 - cover the outside of the coil straight section

- Cu wedge (RRR=200)
 - use copper wedges in the straight section instead of G11 wedges

- Quench protection heater (QPH)
 - attach small sheet heaters
Al sheet & Cu wedges

Al Sheet

Temp. distribution in 0.9 sec after quench

Cu Wedge

Peak Temp. >700 K!
Quench Protection Heater

- Heater size: width 40 mm × height 61 mm
- Quench Detector: 0.1V, 20ms
Quench Protection Heater

- Heater size: width 40 mm × height 61 mm
- Quench Detector: 0.1V, 20ms

QPH is adequate for the conservative quench protection.
QPH ~ number of QPH

Total delay:
Quench detection delay + Thermal diffusion delay

4 QPHs are preferable for the safe protection
Quench Protection Heaters

- **Power supply for QPH**
 - Capacitor Discharge Circuit
 - Energy: 100 J /1 element

![Diagram of Quench Protection Heaters]

- **8 QPH**
- **41 mm**
- **36 mm**

- **120 Ω**
- **120 Ω**

- **350 V**
- **3300 uF**

- **2** (for redundancy)
Full Energy Dump Test

Reassembled 1st prototype

Quench QPH & PS switch-off

Current [kA]

Resistive Voltage [V]

Time [s]

7345 A

Estimated Peak Temp.

~170 K

Acceptable value!
T2K MSS: Principle of quench detection

- 3 MD200 boards for 2 cryostats
- \(\rightarrow21 \) boards for 14 cryostats

Detection Measurement: analog outputs
Detection: logical outputs

Connection box 3-4 with protection resistors
3 high voltage cables with 2 shielded pairs each

Current Beam

Magnet D
Magnet F
Magnet D
Magnet F

= Junction
T2K MSS : MSS architecture

MSS: Magnet Safety System

- **Power Supply**: 100 V / 50 Hz
- **Fans**: CMD1, CMD2, CMD3, CLS1, CLS2
- **AC security and distribution**: CALIM1, CALIM2
- **DAQ1, DAQ2**: Rack 1
- **Measurement and detection**: Rack 2
- **UPS**: Power Supply 100 V / 50 Hz
- **Acquisition PC**: Ethernet, Internet
- **Local monitoring PC**: Field bus WorldFIP
- **To remote monitoring PC (+ security protocol)**
- **Triggers**: CII

Diagram References
- Local monitoring PC
- Field bus WorldFIP
- Measurement and detection crates
- Triggers CII
- Interface crate
- Safety logic crates
- AC security and distribution
- Rack 1 and Rack 2
Contents

1. Introduction
2. System Overview & Design
3. Development of Quench Protection Scheme
4. Tests for Production Magnets
5. Summary and Schedule
Magnet Production

- Three prototype magnets
 - Verification of the magnet design, fabrication tools and assembly procedure.
 - Evaluation of magnet performance such as quench behaviors and magnetic field.

Bidding won by Mitsubishi Electric

- As of February 15, 2007
 12 Production Magnets
 4 Magnet System with Cryostat including prototype
Performance Tests of Production Magnets

- **Quench Tests**
 - in vertical cryostat <- all the magnets
 - in horizontal cryostat <- 2 or 3 magnet system

- **Magnetic Field Measurement (MFM)**
 - at Room Temperature <- all the magnets
 - in LHe <- all the magnets
 - in SHe <- 2 or 3 magnet system
Quench Tests

1. Excitation Tests
2. Quench Protection Heater Check
3. Full Energy Dump Tests
4. Current Bypass Test <- in horizontal cryostat

Up to now
- in vertical cryostat
 - SCFM-01 ~ SCFM-12 (12 magnets)
 - Analyze : SCFM-01~11
- in horizontal cryostat
 - CCFM-00, (CCFM-01 to be tested)
1. Excitation Test at 4.2 K

- \(I_{\text{op}} = 7345 \, \text{A} \) @ 50 GeV (and \(I_{\text{max}} = 7700 \, \text{A} \)) with no quench.
- Fast ramping up to 7345A: No quench at \(500 \, \text{A/s} \)

No training quench
2. QPH check

Quench Detection Delay (from prototype tests)

Q.D. 0.1V, 10msec \rightarrow 110 msec@7345 A

Current: 4400A

allowable delay \rightarrow <150msec

Meas. Average

\sim21.2 ms
3. Full Energy Dump Tests

Example@7345 A

P.S. $R_{\text{dump}} = 0$

Peak Temp. &
Peak Resistive Volt. @ 7345 A

![Graph showing current and resistive voltage over time](image)

![Chart showing peak temperature and resistive voltage against SCFM](chart)
Quench Protection Test with Cold Diode

- Power QPH at F-magnet manually
- Delay extraction circuit to check diode bypass current
- Shut down power supply (dump resistor = 75 m ohm)
Current Bypass to Diode

Peak Temperature in Magnet

- Magnet Current @ It=7kA
- Peak Temperature without Quench Detection Delay
- Peak Temperature with Quench Detection Delay

Current bypass to cold diode is observed as expected
Peak temperatures are well below 200K
→ Very comfortable margin
Contents

1. Introduction
2. System Overview & Design
3. Development of Quench Protection Scheme
4. Tests for Production Magnets
 1. Quench Tests
 2. Magnetic Field Measurement
5. Summary and Schedule
Magnetic Field Measurement

- at Room Temperature (all the magnet)
 - Check → Fabrication Process, Dipole field

- in LHe (all the magnet)
 - Check → Higher order harmonics

- in SHe (2 or 3 magnet system with cryostat)
 - Check → All multipole fields
Field Measurement ~ probe ~

- Use 500mm long rotating coil
- Scanning along magnet bore

GFRP case

Radial coils
Measurement System @ R.T.

to measure exact dipole field strength

Need to measure the position of rotating probe

required precision ⇒ $< \pm 0.1\text{mm}$

- Allowable alignment error of the magnet in the beam line: $<\pm 0.3\text{mm}$
Magnetic Field Measurement @ R.T. ~ System ~

- Coincide the magnet central axis with the laser beam
- Measure displacement of the probe from laser beam by PSD

Position Sensitive Detector (PSD)
Magnetic Field in Straight Section @ 1 A

- Good reproducibility
- Difference: larger than that in B2

Further study is needed.
Magnetic Field Measurement

- at Room Temperature (all the magnet)
 - Check → Fabrication Process, Dipole field

- in LHe (all the magnet)
 - Check → Higher order harmonics

- in SHe (2 or 3 magnet system with cryostat)
 - Check → All multipole fields
Field Measurement in LHe

- Scanning along magnet bore

Probe

Warm Bore
Field Measurement in LHe

- In the vertical cryostat
 - objective: check higher order harmonics
 - Difficult: measure dipole field with good accuracy
 - Difficult: measure the displacement of the probe from magnet axis
 - because of “feed down” from higher order harmonics.

Diagram:
- o: rotation axis
- o': magnetic center
- $z_0 = x_0 + iy_0 = r_0 \exp(i\xi)$
 - Feed down: measurement error caused by offset in rotation axis from magnetic center.

Average skew component of quadruple along straight section → 0
Integral Field Strength @ 7345 A

- Higher order harmonics \rightarrow small
- 1-2 % difference in B2 \leftarrow ??
MFM System in SHE

- Laser passes through the shaft.

To be tested next month
Summary

- The magnet and magnet system are successfully developed!
 - Quench Protection Scheme

- Magnet and Magnet System Production
 - Almost on schedule (12 magnets, 4 magnet system)
 - Performance -> sufficiently good
 - Field measurement system has to be improved.
Schedule

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryostat w/ 2-SCFMs</td>
<td>1 (proto)</td>
<td>6 (12 Mag.)</td>
<td>6 (12 Mag.)</td>
<td>2 & Install</td>
</tr>
<tr>
<td>Transfer Line</td>
<td></td>
<td></td>
<td></td>
<td>Install</td>
</tr>
<tr>
<td>Refrig.</td>
<td></td>
<td></td>
<td></td>
<td>Install</td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td>Install</td>
</tr>
<tr>
<td>Corrector Magnet</td>
<td></td>
<td></td>
<td></td>
<td>Install</td>
</tr>
<tr>
<td>Quench Detector</td>
<td></td>
<td></td>
<td></td>
<td>Install</td>
</tr>
</tbody>
</table>
Dipole field measurement

Dipole strength will be measure in the horizontal test stand.

• In the horizontal cryostat: Several magnets will be measured in supercritical helium.

• At the room temperature All the magnets will be measured.

Field measurement system at R.T will be presented in the poster session, MOA08PO02
Alignment of Magnet

- Align the magnet by referring to the alignment markers attached on the magnet.
TOP側アライメントマーカ位置測定(X)のグラフ1

LE PSD ① ② ③ ④ ⑤ RE PSD 測定位置

グラフ 1

HF側アライメントマーカ位置測定(Y)のグラフ2

LE PSD ① ② ③ ④ ⑤ RE PSD 測定位置

グラフ 2

LF側アライメントマーカ位置測定(Y)のグラフ3

LE PSD ① ② ③ ④ ⑤ RE PSD 測定位置

グラフ 3

X(+)

Y(+)

Top側 90°

HF側 180°

0° LF側

270°

Bottom側

LE側から見て