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Reminder

• Heat transfer from the conductor

to the cold source define the

temperature margin

• Electrical insulation is the largest

thermal barrier against cooling 

• Electrical insulation can be 

– Non-existent

– Monolith

– For LHC magnet

• Tconductor=1.9 K or Tconductor~4 K

[Burnod 1994]

• Previous works focused on the thermal paths (He II)

– Creating paths between the conductors by wrapping different configurations 

and minimizing the glue…

– No complete work on the solid material (holes, conductive insert or porosity)
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• Historical insulation  : 2 wrappings 

– First wrapping in polyimide with 50% overlap

– Second wrapping in epoxy resin-impregnated

fiberglass with gap

•

• The LHC insulation work : 2 wrappings

– First wrapping in polyimide with 50% overlap

– Second wrapping in polyimide with polyimide

glue with gap

• Current LHC Insulation : 3 wrappings [Meuris 1999]

– First 2 wrappings with no overlap

– Last wrapping with a gap

The classical insulation
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• Epoxy Resin or glue on both side of the layer fills up the helium path

• Dry fiber thermally decouples the conductors

• Very small He paths for polyimide insulations with gaps due to overlapping

• Importance of conductor decoupling

Heat transfer in classical insulation (1/2)
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[Baudouy 1996] and [Meuris 1999]
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• Importance of conduction in the insulation

– For Large ∆T, He II HT < Conduction HT

[Kimura 1999] and [Baudouy 2OO1]

• Importance small face porosity [Baudouy 1996]

– Artificial permeability with 6 holes of φ 200 µm

Heat transfer in classical insulation (2/2)
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• For the next generation of high field magnets, Nb3Sn is considered

• Higher heat deposition than in current magnets is expected

– Beam losses : 10 mW/cm3 (LHC) and 50 to 80 mW/cm3 (LHC upgrade)

• Since 1997, development by J.M. Rey and F. Rondeaux

– Ceramic materials are investigated in replacement for the classical insulation 

(Fiberglass + epoxy resin impregnated after heat treatment)

– One step process

• Obtain a coil after heat treatment (Same than Nb3Sn) with no impregnation

• Good wrapping and resistance to heat, reduce fabrication complexity and costs

– Increase the volume of He in the insulation and the thermal path

• Higher enthalpy reserve and overall thermal conductivity

• Innovative insulation for Nb3Sn magnet

– Fiberglass tape + Ceramic precursor 

– (80%SiO2 + argil) [Puissegur 2004]

The ceramic insulation

Courtesy of F. Rondeaux (CEA)
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Ceramic Classical (Polyimid)

• Geometry Porous Channels (slits)

• Pore size, d ~100 µm 10 µm at Saclay (determined)

100 µm at KEK (determined)

• Porosity,ε 4.5 to 29 % ~1 % (ratio of AHeII/Atotal)

• Conductivity, k ≈4 10-2 W/Km kkapton≈10
-2 W/Km @ 2 K

• Kapitza conductance hk=3200 W/m2K hk=4000 W/m2K @ 1.5 K

– Thickness < 10 µm for a Kapitza resistance influence…

→ What is the influence of the geometry

on the total HT?

→ Helium + conduction = Insulation?

Heat transfer considerations

[Puissegur 2004]
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He II Heat transfer in confined geometry

• Physical law in He II modified by the geometry?

– Properties modified?

– A(T), ρs, …

– HT regimes modified?

– Landau regime

– Superfluid turbulence (fully developed?)

• Modeling sufficient?

– Coupling between solid and He II

– Porous media model?
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He II Heat transfer in small tubes/slits

• Heat transfer in small channels [Kimura 1999]

– deq ∈ [56; 4800] µm

– L ∈ [30; 40] mm

• Heat transfer in small slits? [Kimura 2005]

– 53 µm x 16 mm

– AGM not modified

– vortex spacing 1 µm

– fully developed turbulence

• Heat transfer in deq of 1 µm range?

– Modification of the Physical law?

– Bulk properties?
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He II Heat transfer in porous media

• Experimental work

– CEA Saclay

– NIFS

• Numerical work

– NIFS

– CEA Saclay in development

Pressure sensor

Porous media glued 

with epoxy resin

Indium joint

Heater

Temperature sensor

Instrumentation 

feed-through
Vacuum

120 mm

Ti

Inner bath

Cryostat bath
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Flow properties
• Permeability in pure Landau regime

– Evidence that K is temperature dependent

– Analysis is based on the assumption that 

the Darcy law is valid

• Tortuosity in Gorter-Mellink regime
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Intermediate regime – Saclay model
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• Fair agreement between model and data

– Extracted ω decreases with T

– 10% permeability K variation induces 5% tortuosity ω variation

• Model fails to predict a constant ω over the entire range of temperature

• For T≤1.9 K ω=3.40.4, which corresponds to 10% variation
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Numerical simulation

• Steady State and transient He II heat transfer model in porous media 

– Network of 1 D tubes

– Vn neglected in small tubes

– Friction term model with friction factor f

– Adjusting tortuosity to match the 

experimental results

ω=4.6 (ω =3.4 at Saclay)

[Hamaguchi 2005]

[Hamaguchi 2006]
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NED Program (1/3)
• Collaboration between CEA-Saclay, KEK, CERN and RAL

– Tests in He II at CERN and Saclay

– Tests in SHe at KEK

• Construction of a Double bath Cryostat (WUT and CEA-Saclay)

• Construction of molds by KEK (N. Kimura)

• Construction  of 1D HT drum

[Chorowski 2006]
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NED Program (2/3)
• Tests of Saclay stack sample

• RAL (S. Canfer) classical Nb3Sn insulation to be tested 

• Ceramic insulation stack samples to be constructed 

– KEK method

– Help of N. Kimura at Saclay in March 2007
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NED Program (3/3)

J. Polinski (Saclay) and Courtesy of D. Richter (KEK)

• Test of 10 years old sample made @ Saclay

– Untouched

– 17 tones on the samples as specified

– Comparison with CERN results (untouched)
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Program @ CERN

Courtesy of D. Richter (CERN)

• Comparison between High Ramp Rate Quench measurement at 

CERN and Saclay stacks results

– For T>Tλ, MagnetCERN=0.5 Stack

– Outer layer blocked

• Measurement of HT on a segment of 

an LHC dipole coil

– For T<Tλ, CoilCERN=1.5 Stack

[Richter 2005]
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Propositions

• Fundamental HT understanding

– Experimental work at characteristic dimension lower than 1 µm in porous 

media, slit and tube.

– Numerical model more predictive (no entry parameters coming from exp.)

• Modeling heat transfer in the insulation

– Study of HT coupling between conduction and He II

• Developing the insulation

– Increasing the thermal conductivity of the solid matrix

• HT in coil model or magnet

– Analysis of HRRQ to be continued at CERN

– Experiment on coil segment at CERN is the missing link and has to be 

supported
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