Introduction of µ-e Conversion Experiment and Superconducting Magnet System at J-PARC

Masaharu Aoki Osaka U.

A workshop for the Saclay-KEK cooperation program on superconducting magnets and cryogenics for accelerator frontier KEK 2007/2/15-16 Physics Motivation charge Lepton Flavor Violation

µ-e Conversion Process

nuclei

• Muonic Atom (IS state)

Muon Capture

 $\mu^- + (A, Z) \to \nu_\mu + (A, Z - 1)$

Muon Decay in Orbit $\mu^- \rightarrow e^- \nu \overline{\nu}$

• µ-e Conversion

 $\mu^-(A,Z) \to e^- + (A,Z)$

Coherent Process

Lepton Flavor is violated: LFV
Forbiden in Standard Model
Physics of chared Lepton Flavor Mixing

Lepton Flavor Mixing

- Quark Mixing : Kobayashi-Maskawa Matrix
- Neutrino Mixing : Maki-Nakagawa-Sakata Matrix
- charged Lepton Mixing : not-yet-observed
 - charged Lepton Flavor Violation (c-LFV)
 - Neutrino-mixing predicts very small amount of c-LFV via higher order diagram; it is as small as practically impossible to observe in forseeable future.

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \sum_{i} \left| U_{\mu i} U_{ei}^* \frac{m_{\nu_i}^2}{M_W^2} \right|^2 \simeq 10^{-60} \left(\frac{m_{\nu}}{10^{-2} \,\mathrm{eV}} \right)^4$$

• c-LFV = Physics beyond SM

charge Lepton Flavor Violation (c-LFV)

c-LFV slepton mixing **SUSY**

 $\begin{pmatrix} m_{\tilde{e}\tilde{e}}^2 & \Delta m_{\tilde{e}\tilde{\mu}}^2 & \Delta m_{\tilde{e}\tilde{\tau}}^2 \\ \Delta m_{\tilde{\mu}\tilde{e}}^2 & m_{\tilde{\mu}\tilde{\mu}}^2 & \Delta m_{\tilde{\mu}\tilde{\tau}}^2 \\ \Delta m_{\tilde{\tau}\tilde{e}}^2 & \Delta m_{\tilde{\tau}\tilde{\mu}}^2 & m_{\tilde{\tau}\tilde{\tau}}^2 \end{pmatrix}$

Physics of slepton mass matrix

Theoretical Predictions

Process	Current Limit	SUSY-GUT level	Future
$\mu N \rightarrow e N$	10 ⁻¹³	10 ⁻¹⁶	10-16,10-18
$\mu \rightarrow e \gamma$	IO-II	IO ⁻¹⁴	10 ⁻¹³
$\tau \rightarrow \mu \gamma$	10 ⁻⁶	10 ⁻⁹	10 ⁻⁸

LHC and c-LFV

- if LHC finds SUSY particle
 - Physics of slepton mass matrix will be strengthened.
 - Further exploration of SUSY structure (SUSY-GUT, SUSY-Seesaw) will become more important.10⁻¹¹
- if LHC does not find SUSY particle
 - high-intensity exp. comes forefront.

µ-e Conversion Experiment

Principal of Experiment

- Signal : $\mu^- + (A,Z) \rightarrow e^- + (A,Z)$
 - A single mono-energetic electron
 - 100 MeV
 - Delayed : -1µS
- No accidental backgrounds
- Physics backgrounds
 - Muon Decay in Orbit (MDO)
 - $\Delta E_{e}=350 \text{ keV} (BR:10^{-16})$
 - Beam Pion Capture
 - $\pi^- + (A,Z) \rightarrow (A,Z^-I)^* \rightarrow \gamma + (A,Z^-I)$ $\gamma \rightarrow e^+ e^-$
 - Prompt timing or/and
 - Pure muon beam
- High intensity µ beam

Phase-1 Overview

• Large µ yields

- J-PARC/MR
 - only 60 kW out of 450kW
- π-capture SC-solenoid
- 10¹¹ μ/s (PSI:10⁸ μ/s)
- Pulsed Proton Beam
 π-b.g. suppression
- PRIME detector
 - Curved SC-solenoid
- Upgradability to PRISM
 - add Phase-Rotator-Ring

Experimental Site

J-PARC/MR Hadron Hall

Preliminary Site Layout

Pion Production

• Pion Production Target

- Graphite : 60cm^L, 4cm^{\$\$\$}
- 2 kW energy dissipation for 56 kW
- He or water cool

Backward Extraction

solenoids

• Reduce high-p π -b.g.

• Reduce heat-load to

MELC, MECO idea

Pion Capture

µ-yield vs. B_{max}

• $p_t \rightarrow p_l$

- Parallel beam for p selection downstream
- yields : 0.05 $(\pi+\mu)$ /proton

Heat Load

Energy deposition (GeV/g/1ppp)

30 mm × 5 mm NbTi 1.28 mm diameter 32 strands NbTi: Cu: Al = 19%: 34%: 46% density: 4.0 g/cm³ • Heat Load

- 2 kW@ target
- 35 kW@W Shield
- ΔE density : 2 × 10⁻⁵ W/g behind W shield
 - 20cm-Cu SC coil : 1 kW MECO design
- Design goal < 100 W
 - 2 × 3cm-Al SC coil : 10 W
 - B = 5T, D = 300mm
 - 12.3 MJ, 12.5 kJ/kg
 - $B_{critical} = 8.4 T$

Muon Beamline

Guide π's until decay to µ's
Suppress unwanted particles
µ's : pµ< 75 MeV/c
e's : pe < 100 MeV/c

Vertical Drift in Torus $D[m] = \frac{1}{0.3 \times B[T]} \times \frac{s}{R} \times \frac{p_l^2 + \frac{1}{2}p_t^2}{p_l}$

Compensative Vertical B

PRIME Overview

- Curved solenoid
 - Cut the low momentum charged particle backgrounds.
 - Cut the neutral particle backgrounds.

Electron Transmission

Use torus drift for rejecting low energy DIO electrons.
rejection : 10⁻⁷-10⁻⁸, < 1kHz
Good acceptance for signal e's
30-40%

Transmission efficiency

Electron Detector

- Rate < I kHz
- Straw-tube tracker layers
 σp = 230 keV/c
- Trigger calorimeter

Detector Acceptance & Signal Sensitivity

	Acceptance
Geometrical Acc.	0.73
Electron Transport	0.44
Energy Selection	0.68
pt > 90 MeV/c	0.82
Timing cut	0.38
Total	0.07

$$B(\mu^{-} + Al \to e^{-} + Al) = \frac{1}{N_{\mu} \cdot f_{\text{cap}} \cdot A_{e}}$$

Proton Intensity	4 × 10 ¹³ Hz	
Running Time	2 × 107 sec	
µ's yields per proton	0.0024	
µ-stopping efficiency	0.29	
Total	5.6 × 10 ¹⁷ stopped µ's	

•
$$N_{\mu} = 5.6 \times 10^{17}$$

• $f_{cap} = 0.6$ for Aluminum
• $A_e = 0.07$
• $B(\mu^- + Al \rightarrow e^- + Al) = 4 \times 10^{-17}$
 $< 10^{-16} (90\% C.L.)$

Toward full PRISM

Phase-I:R<IO⁻¹⁶ Full PRISM:R<IO⁻¹⁸

Same Beamline, Detector (PRIME)
Add FFAG Phase -Rotator
Fast-Extracted Proton Pulse