Innovative vibrationcancellation method for a pulse tube cryocooler

Toshikazu SUZUKI^A

Tomiyoshi HARUYAMA^A, Takayuki TOMARU^A, Takakazu SHINTOMI^A, Nobuaki SATO^A, Akira Yamamoto^A, Yuki IKUSHIMA^B and Rui LI^B ^AHigh Energy Accelerator Research Organization ^BSumitomo Heavy Industries, Ltd.

2005.12.14 ACASC2005 OC1

contents

- Pulse tube cryocooler system with vibration-reduction Stage
- Elastic deformation of pipe: a source of vibration
- Vibration cancellation method
- Test models
- Experiments
- Results
- Summary and conclusion

Example of PT Cryocooler system with vibration-reduction stage

Reduction)

Cryocooler system with V.R. stage

Excellent reduction of vibration Need additional somewhat complicated structure

Method of vibration cancellation

Utilize a vibration as a counter force Possibly realize compact cryocooler system

Experimental proof of a basic idea

Canceling vibration of cold stage
k-th pair
$$p(t) = p_0 \exp\left[i\left(\omega t + \frac{2\pi}{n}k\right)\right] \rightarrow \Delta z_k = \Delta z_0 \exp\left[i\left(\omega t + \frac{2\pi}{n}k\right)\right]$$

Identical 2n-pipes --> n-pairs
 $\Delta z_0 = (\frac{1}{2} - v)\frac{p_0RL}{tE}$
 $\Delta z_{ColdStage}(t) = \sum_{k=1}^{n} \Delta z_0 \exp\left[i\left(\omega t + \frac{2\pi}{n}k\right)\right]$
 $= \left(\Delta z_0 \exp[i\omega t]\right) \sum_{k=1}^{n} \exp\left[i\frac{2\pi}{n}k\right]$
 $= 0 \qquad \because \qquad \sum_{k=1}^{n} \exp\left[i\frac{2\pi}{n}k\right] = 0$
 $(k, n \in N, \quad k \le n)$

General class of cancellation

2n : Number of pipes $2\pi/p$: step of phase shift When $\frac{2n}{p} = m$, $m \in \mathbb{Z} \longrightarrow \sum_{k=0}^{2n} \exp[i\frac{2\pi}{p}k] = \frac{1 - \exp[2\pi i\frac{2n}{p}]}{1 - \exp[i\frac{2\pi}{p}]} = 0$

Applicable sets of (n, p, m) for top-loading type pulse tube cryocooler.

Demonstration of the vibration-cancellation method

- 1st models : no regenerator single-pipe (equivalent to n=1), four-pipe (n=2), six-pipe (n=3)
- 2nd model : with regenerator cartridge and buffer tank four-pipe (n=2)

1st Test Models (without regenerators)

Four-pipe

Six-pipe

R=10mm L=200mm t=0.2mm Stainless steel E=210GPa v=0.29 Δp =0.64MPa

Experimental setup

Pulse generator

Valve connection

Optical transducer

Experimental results (Δx)

$$\Delta x_0^{RMS} = 1.6 \mu m$$
$$\Delta x_{Noise}^{RMS} = 0.029 \mu m$$

$$\Delta x_0^{RMS} = 0.53 \mu m$$
$$\Delta x_{Noise}^{RMS} = 0.023 \mu m$$

 $\Delta x_0^{RMS} = 0.51 \mu m$ $\Delta x_{Noise}^{RMS} = 0.012 \mu m$

Effect of time delay

Flow impedance -> Delay -> Lateral motion

2nd Test Model

Experimental setup of the 2nd test model

Cold Stage Vibration of the 2nd Test Model

Cold Stage Vibration of the 2nd Test Model (with regenerator cartridges)

Driving Pressure and Cold Stage Vibration of the 2nd Test Model (with cartridges)

Summary and conclusion

- Cold stage vibration of 1st test models
 - $-\Delta z=3.4\mu m$ for the single pipe model
 - Δz =0.13 μm for the four pipe model
 - Δz =0.082 μ m for the six pipe model
- About 98% reduction in the six-pipe model
- Current reduction rate of the 2nd model is about 71 % at T=168 [K].
- The basic idea of the vibration cancellation is applicable for a low vibration PT cryocooler system.
- Improvements of the 2nd model are continued.