J-PARCニュートリノビームライン用 超伝導電磁石システム(6) - プロトタイプ機及び実証機の製作 -

高エネルギー加速器研究機構

中本建志, 東憲男, 木村誠宏, 安島泰雄, 飯田真久, 大畠洋克, 岡村崇弘, 荻津透, 佐々木憲一, 菅原繁勝, 田中賢一, 寺島昭男, 都丸隆行, 槙田康博, 山本明

総合研究大学院大学

尾花哲浩

東芝

折笠朝文, 金原利雄, 橋口英史, 藤井寿朗

2005年度春季低温工学・超伝導学会 6月2日(木)東京大学

発表内容

・はじめに

J-PARCニュートリノ振動実験 コンバインドファンクション超伝導磁石

- ・設計概要
- ・プロトタイプ機及び実証機の製作
- ・まとめ及び今後の予定

$J_{apan}\mbox{-}ProtonAcceleratorResearchComplex} Facility$

Neutrino physics at J-PARC Tokai-to-Kamioka (T2K) LBL v experiment

フルスケールプロトタイプ機及び実証機の開発

目的 磁石設計、治具及び製作方法の確認 磁石性能(クエンチ特性、磁場品質)の検証

プロトタイプ機:高工ネ研により製作 フル計装(電圧タップ、クエンチヒーター、歪みゲージなど) クエンチ保護ヒーターは非装着 補正コイル付きビームチューブ

実証機:メーカーへの技術移転が目的 東芝(入札)が、高エネ研所内で製作(プロト機と同様の治具) 計装無し(実機予備機の可能性) クエンチ保護ヒーターを装着 実機用ビームチューブ

両機とも液体ヘリウム冷却下で励磁試験

発表内容

・はじめに

J-PARCニュートリノ振動実験 コンバインドファンクション超伝導磁石

- ・設計概要
- ・プロトタイプ機及び実証機の製作
- ・まとめ及び今後の予定

Mechanical Short-section Model Study

Specification

2D & 3D Model by ROXIE

Coll ID.:	173.4mm	Op. Current:	7345 A
Mag. Length:	3300 mm	Op. Margin:	72%
Mech. Length:	3630 mm @RT	Inductance:	14.3 mH
Tmax:	< 5.0K	Stored Energy:	386 kJ
	(Supercritical Helium)	# of Magnet:	28
Dipole Field:	2.59 T	SC Cable:	NbTi/Cu for LHC
Quad. Field:	18.6 T/m		Dipole Outer-L
Field Error:	<10^-3 (@Rref=50mm)		10

Load line & Field Quality

- 超伝導コイル最高磁場は約4.6 T (50GeV運転時)
- •5 Kでのロードライン比は58 %及び72 % (それぞれ40及び50GeV運転 時)
- ・参照半径50mmでの誤差磁場は10-3以内で、仕様を満足

Coil Alignment ・コンバインドファンクション磁場 ➡> 左右非対称(2+5ブロック)

- ・ポールを固定 🔿 機械特性(周長、ヤング率、熱収縮)の左右非対称
- ・組み立て時コイル周方向予備圧力: 80MPa → オーバーサイズ0.7&1.0mm
- ・G11**ウェッジの製作精度(目標):±**50μm

発表内容

・はじめに

J-PARCニュートリノ振動実験 コンバインドファンクション超伝導磁石

- ・設計概要
- ・プロトタイプ機及び実証機の製作
- ・まとめ及び今後の予定

Coil Winding for Prototype Magnet

・2種類のシムによる左右コイルのオーバー

Coil Size Measurement

- ・キュアリングと同じ治具を使用
- ・3通りのシム厚さの組み合わせで、プレスを押し切ったときの面圧を測定

・各コイル、左右でコイルサイズ が大体揃っている ・組み立て時の推定コイル面圧 (60~90MPa)は、ほぼ設計通り

Yoking

Top Yoke Installation

Top Yoke Installation Complete

2300 ton hydraulic press

・コイル予備圧力は約60 MPa
▲ コイルサイズ測定結果と一致
・上下ヨークの隙間は閉じている

Shell Welding, Ends Works

Longitudinal shell welding by two automatic welding machines.

Leads connection by soldering.

Point-welding of Alignment target base

Mechanical Measurement - After Shell Welding

Complete

20